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Abstract: H∞ controller is one of the techniques of robust control. H∞ control technique is aimed to obtain a 

robust control system, i.e. the control system is insensitive to the differences between the actual system and the 

model of the system which was used to design the controller. This control technique is very popular, and has 

been implemented in many important engineering applications. One important application of H∞ controller is in 

the field of electrical power engineering, where the H∞ controller concept has been employed for the purpose of 

damping of power oscillation. This paper provides an overview on the H∞ controller and its application in 

improving dynamic performance of an electrical power system. 
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I. Introduction 
H∞ control theory was originally formulated by Zames in the early 1980s, and  is aimed to obtain a 

robust control system [1]. A control system is robust if it is insensitive (i.e. remains stable and achieves certain 

performance criteria) to the differences between the actual system and the model of the system which was used 

to design the controller. These differences are referred to as model uncertainty [1-3]. Typical sources of the 

difference include unmodelled (usually high-frequency) dynamics, neglected nonlinearities in modeling, effects 

of deliberate reduced-order models and changes in system operating conditions [1-3]. In other words, the goal of 

the H∞ control theory is to obtain satisfactory performance specifications even for the “worst-case” of 

uncertainty. 

The H∞ controller is developed to overcome the shortcomings of the non-robust controllers. The non-

robust (fixed-parameter) controller is, in general, based on one particular system operating condition. The key 

disadvantage of this controller is that the possibility of the controller performance deterioration under other 

operating conditions. Furthermore, it is not possible to achieve maximum performance for each and every 

operating condition when the controller parameters are fixed. This paper provides an overview on the H∞ 

controller and its application in improving dynamic performance of an electrical power system [1-22]. 

In order to be systematic, this paper is organized as the following. First, the overview of the H∞ control 

theory will be discussed to introduce the terminologies used in the H∞ design framework and explain its 

principle. Then, the summary will be given of the published reports of the H∞ approaches for power system 

damping control which have been investigated over the last decade. 

 

II. H∞ Control Theory 
2.1. H∞ Norm 

The H∞ norm has been extensively used in H∞ control problem formulation because it is the 

convenient way for representing the model uncertainty [1]. It is to be noted that, in H∞ design framework, the 

uncertainty can be modeled as perturbations to the nominal model. In H∞ controller design, the H∞ norm is 

minimized in order to obtain the robust design for the controller. It will be shown that minimizing this H∞ norm 

corresponds to minimizing the peak of the largest singular value (“worst direction, worst frequency”), and 

therefore, it can be used as a measure of the worst possible performance of the control system [1]. 

The H∞ norm of a system is the peak value of the transfer function magnitude over the whole 

frequency range. In a multi-input-multi-output (MIMO) system, the H∞ norm is the peak of the largest singular 

value and can be expressed as [1]: 

                                                                         )(max)( 


js GG 


                                                             (1) 

Since the singular value provides maximum gain in the principal direction, H∞ norm can be seen as the 

magnitude of the transfer function in the worst direction over the entire frequency range [1]. 

The maximum singular value   of transfer matrix G is determined by [1]: 
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where v1 is the vector of the first column elements of unitary matrix V. The unitary matrix V can be found by 

using the singular value decomposition of G, i.e. HVUΣG   (note that the superscript H represents the matrix 

complex conjugate). In (2), 
2

. is a vector 2-norm and defined by [1, 3]: 

 

                                                                        2
2

2
12

xx ||||x                                                            (3) 

where |xi| is the magnitude of the ith element of vector x. 

 

2.2. Controller Design 

This section discusses the transfer function shaping approach for controller design. In this approach, 

the designer specifies the “magnitude” of some transfer function(s) as a function of frequency, and then finds a 

controller which gives the desired shape(s) [1]. The transfer function shaping approach can be subdivided into 

two approaches as follows: 

(i) Loop-shaping approach. This is the classical approach in which the magnitude of the open-loop transfer 

function is shaped. However, classical loop-shaping is difficult to apply for complicated systems, and 

therefore, the Glover-McFarlane H∞ loop-shaping design is preferred instead.  

(ii) Closed-loop transfer function shaping approach. In this approach, the closed-loop transfer functions such 

as S, T and KS are to be shaped in the design. Optimization is usually used in the approach, resulting in 

various H∞ control problems such as mixed-sensitivity. The following is the explanation of the S, T and KS 

transfer functions. 

 

Consider the standard feedback control system shown in Fig.1 [1, 2]. In Fig.1, G is the plant model, K 

is the controller model to be designed, r is the reference inputs (commands, set-points), d is the disturbances, n is 

the measurement noise, y is the plant outputs (these signals include the variables to be controlled), ym is the 

measured y, u is the controller output signals (manipulated plant inputs), and v is the controller inputs (i.e. the 

difference between the reference inputs and measured plant outputs). 

For the control system of Fig.1, it can be shown that the following relationships hold [1, 2]: 

 

                                                                         TnSdTry                                                                           (4) 

                                                                     KSnKSdKSru                                                                       (5) 

                                                                  TnSdSrrye                                                                    (6) 

where   1
 GKIS  is the sensitivity function, and   GKGKIT

1
  is the complementary sensitivity 

function. It can be seen that S is the closed-loop transfer function from the disturbances to the outputs, while T is 

the closed-loop transfer function from the reference signals to the outputs. 

The objective of the robust control design is to find a controller such that the closed-loop system is 

robust. As mentioned in the previous discussion, in order to achieve this, the H∞ norm of the transfer matrix 

should be minimized. Similarly, for the control system shown in Fig.1, in order to obtain the best performance 

specifications such as disturbance rejection or noise attenuation for any r, d or n, the H∞ norm of the 

corresponding transfer matrices should also be minimized. 

 

Figure 1 Standard feedback control system 
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Therefore, the controller design problem can be formulated as follows: over the set of all stabilizing 

controllers K‟s (i.e. those K‟s make the closed-loop system internally stable), find the optimal one that 

minimizes [1, 2]: 

 


S ; for good disturbance rejection or tracking 

 


T ; for good noise attenuation, and 

 


KS ; for control energy reduction 

 

2.3. Standard H∞ Control Problem 

Fig.2 shows a general control configuration where any particular control problem can be manipulated 

into this configuration [1-3]. The standard control system in Fig.1 can be transformed into an equivalent form of 

the general structure in Fig.2 which is more convenient to formulate the H∞ control problem. The system of 

Fig.2 is described by: 
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                                                                                     Kvu                                                                                (8) 

 

where P is the generalized plant model (this will include the plant model G and the interconnection structure 

between the plant and the controller), w is the exogenous inputs (commands, disturbances and noise), z is the 

exogenous outputs (“error” signals to be minimized to meet the control objectives, i.e. y – r). 

 
Figure 2 General control configuration 

 

In state-space approaches to H∞ control, it is common to introduce the realization of the generalized 

plant P in the form of [4]: 
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This realisation corresponds to the state-space equations: 
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                                                             (10) 

 

Assume that the realization of the controller to be determined in Fig.2 is: 

  K
1

KKK BAsICDK


 , and the corresponding state-space equations is of the form: 
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With the generalized plant defined as (10) and the controller model defined as (11), it can be shown that the 

realization of the closed-loop system shown in Fig.2 in state-space form is given by [4, 5]: 
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The results in (13) have been obtained by assuming D22 in (10) equal to 0. This assumption will incur 

no loss of generality and has been made only to simplify the calculations [4]. It can also be shown that the 

closed-loop transfer function from w to z for the system configuration in Fig.2 is given by [2-4]: 

 

                                                              cl
1

clclclzw B)AI(CDTF  s                                                        (14) 

 

The standard H∞ optimal control problem is to find all stabilizing controllers which minimize the H∞ 

norm of the closed-loop transfer function: 

 

                                                                  )(max 


jzwzw TFTF 


                                                            (15) 

 

In practice, it is usually not necessary to obtain an optimal controller for the H∞ problem, and it is 

often simpler to design a sub-optimal one. Therefore, the H∞ sub-optimal control problem consists of finding all 

stabilizing controllers such that [2-4]: 

 

                                                                                
zwTF                                                                         (16) 

 

where  is greater than the minimum value of 
zwTF  over all stabilizing controllers. 

The standard H∞ optimal control problem (16) can be solved by: (i) analytical approach using a 

positive semi-definite solution to the algebraic Ricatti equations (AREs), or (ii) numerically optimize certain 

performance index such that the algebraic Ricatti inequalities (ARIs) are satisfied. Although ARIs are nonlinear, 

they can be converted into linear matrix inequalities (LMIs) by using linearization techniques [6, 7]. 

The numerical approach using LMIs has a distinct advantage as additional constraints (such as 

minimum damping ratio) can be included in the design in a straight forward manner [6]. In order to ensure a 

minimum damping ratio, a method known as pole-placement is used in the design. In the method, the poles of 

the closed-loop system are placed within a certain region in the complex plane. LMI-based solution to the H∞ 

control problem is described in the following section. 

 

2.4. LMI-Based H∞ Design 

By using the Bounded Real Lemma and the Schur’s formula, it can be concluded that the H∞ constraint 

(16) is equivalent to the existence of a solution of a symmetric matrix 0X cl  to the following matrix inequality 

[4, 7]: 
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In the matrix inequality (17), Acl, Bcl, Ccl and Dcl are functions of the controller variables AK, BK, CK 

and DK, and the controller variables are functions of Xcl. This makes the products of the terms involving Xcl in 

(17) nonlinear. The following techniques are used to change the controller variables and convert the problem 

into a linear one. 

Let n be the number of the plant states (size of A) and k be the order of the controller (with k ≤ n), and 

also let Xcl (of dimension (n+k)(n+k)) and its inversion ( 1
cl
X ) be partitioned as: 
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where SH and RH are of dimension nn  and symmetric. It can be shown that Xcl will satisfy the identity 

12cl ΠΠX   for [5, 7]: 
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Also, let the new controller variables be defined as: 
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By examining the identity 12cl
1

clcl ΠΠXIXX  or    , it can be shown that: 

 

                                                                        HH
T
HH SRINM                                                                   (21) 

 

Pre- and post-multiplying the inequality 0X cl  by 2
T
2 Π  Π and  respectively leads to the following LMI 

problem [5, 7], the solution of which is used for forming Xcl. 
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T
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respectively, and carrying out appropriate change of variables according to (20), the following LMI is obtained 

[5, 7] for determining the controller variables: 
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where: 
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Therefore, the LMI-based solution to the H∞ control problem consists of the following steps: 

 Solve the LMIs (22) and (23) for DC,B,A,S,R


 and HH  

 Compute T
H and NMH by using a full-rank factorisation of HH

T
HH SRINM   

 Based on (20), determine the controller variables as follows: 
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 Determine the controller transfer function using K
1
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III. Application Of H∞ Control In Power System 
H∞ approaches for power system damping control have been investigated over the last few decades [8-

22]. The results of the investigation have also been reported in many literatures and can be summarized as 

follows: 

- In [8], the methodology for the design of robust damping controllers for PSSs has been discussed. The 

design procedure was based on a formulation of the output feedback control problem, which is suited for 

damping controller design. With this formulation, the design problem can be expressed directly in the form 

of LMIs. Also, the inclusion of a regional pole placement criterion, as the design objective, allows the 

specification of a minimum damping factor for all modes of the controlled system. It has been shown in [8] 

that the controller is able to provide adequate damping for the oscillation modes of interest. 

- In [9, 10], the design of an H∞ controller for FACTS device for enhancing the electromechanical mode 

damping has been presented. The H∞-based design procedure has been developed in an attempt to obtain a 

robust damping controller for a thyristor controlled series compensator (TCSC). In the procedure, two 

Riccati equations were used and solved in order to obtain the solution for the H∞ optimization problem. 

- The design process and a method to formulate the H∞ optimal PSS design problem in terms of a general H∞ 

control design framework have been discussed in [11]. The H∞ design problem has been solved by using 

two algebraic Riccati equations. The H∞-based PSS was tested by simulation on a single-machine infinite 

bus (SMIB) system. Results of the testing show that the proposed H∞ PSS satisfies the design 

specifications. 

- Design of a robust supplementary controller for a static VAr compensator (SVC) to improve the damping of 

a two-machine power system has been proposed in [12]. In the paper, the formulation of the damping 

control problem has been based on the H∞ optimization. The solution to the design problem was obtained 

by solving the standard mixed-sensitivity control problem. 

- In [13, 14], a Glover-McFarlane H∞ loop-shaping approach has been used to design a robust control for a 

FACTS device and PSS respectively. In [13], the H∞ loop-shaping was used to design a robust control for 

static compensator (STATCOM), series power flow controller (SPFC), voltage source converter (VSC)-

based static phase shifter (SPS) and unified power flow controller (UPFC). The simulation has been carried 

out in [13] to show the effectiveness of the proposed controllers in improving the system damping. In [14], 

it has been shown that the H∞ PSS can guarantee the stability of a set of perturbed plants with respect to the 

nominal system and exhibit a good oscillation damping ability. 

- In [15], a method for designing low-order controllers for damping power swings has been proposed. The 

method was based on an H∞ design formulation and uses LMI solver to obtain controller parameters. In 

particular, the proposed method has been used for design of a PSS for a SMIB system and a decentralized 

control for a TCSC and an SVC in a three-area system. Although the proposed method might not guarantee 

to provide global convergence, the convergence to a good damping controller design can be achieved [15]. 

- In [16], a robust design and tuning of a PSS in a SMIB system has been presented. In the method, 

maintaining stability and performance over a range of uncertain plant parameters (due to variations in 

generation and load patterns) was handled by imposing an upper bound on the H∞ norm of the closed-loop 

transfer function. A pole region constraint was also included in the design. The solution to these design 

problems has been obtained by solving a standard LMI formulation. 

- An H∞ mixed-sensitivity design of a damping device employing a UPFC has been presented in [17]. The 

problem is posed in the LMI framework. The controller design was aimed at providing adequate damping to 

interarea oscillations over a range of operating conditions. The results obtained in a two-area four-machine 

test system have shown to be satisfactory both in the frequency domain and through nonlinear simulations. 
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- In [18, 19], a design procedure for robust damping controller of superconducting magnetic energy storage 

(SMES) device has been presented. The mixed-sensitivity H∞ design based on the LMI formulation was 

used in the power system damping control design. Furthermore, a regional pole placement objective was 

also addressed in the design process [18]. 

- A H∞ damping control design based on the mixed-sensitivity formulation in an LMI framework has been 

carried out in [20, 21]. In [20], a power system containing a controllable series capacitor (CSC), a static 

VAr compensator and a controllable phase shifter (CPS) was considered. It has been shown in [20] that the 

H∞ controllers designed for these devices can improve the damping of interarea oscillation and also robust 

in the face of operating condition changes such as: varying power-flow patterns, load characteristics and tie-

line strengths. In [21], a multiple-input single-output (MISO) H∞ controller has been designed for a TCSC 

to improve the damping of the critical interarea modes. Also, in [21], the stabilizing signals are obtained 

from remote locations based on observability of the critical modes. 

- The application of loop-shaping technique in H∞ damping control design has been proposed in [22]. In [22], 

the problem of robust stabilization of a normalized coprime factor plant description was converted into a 

generalized H∞ problem. The problem was solved using LMIs with additional pole-placement constraints. 

In addition to robust stabilization of the shaped plant, a minimum damping ratio can thus be ensured for the 

critical modes. The proposed method has been used to design a supplementary damping controller for a 

TCSC. 

 

IV. Conclusion 
This paper has presented and discussed the robust control technique, namely H∞ controller. This control 

technique is very popular and has been implemented in many important engineering applications. One important 

application of H∞ controller is in the field of electrical power engineering, where the H∞ controller concept has 

been employed for the purpose of damping of power oscillation. The H∞ controller is developed to overcome the 

shortcomings of the non-robust controllers, and is aimed to obtain satisfactory performance specifications even 

for the worst-case of system uncertainty. The application of the robust controller in enhancing power system 

dynamic performance has also been presented in the paper. 
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